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Higher-twist contribution to fragmentation function in inclusive hadron
production in eþe− annihilation

Shu-yi Wei,1 Yu-kun Song,2,3,* and Zuo-tang Liang1,†
1School of Physics, Shandong University, Jinan, Shandong 250100, China and Key Laboratory of Particle

and Particle Irradiation, Shandong University, Ministry of Education, China
2Interdisciplinary Center for Theoretical Study and Department of Modern Physics,

University of Science and Technology of China, Anhui 230026, China
3Key Laboratory of Quark and Lepton Physics (CCNU), Ministry of Education, China

(Received 19 September 2013; published 28 January 2014)

We apply collinear expansion to inclusive hadron production in eþe− annihilation and derive a
formalism suitable for systematic study of leading as well as higher-twist contributions to fragmentation
functions at the tree level. We make the calculations for hadrons with spin-0, spin-1=2 as well as spin-1 and
obtain the results in terms of different components of fragmentation functions for the hadronic tensors, the
differential cross section as well as hadron polarizations in different cases. The results show a number of
interesting features such as the existence of transverse polarization for spin-1=2 hadrons at the twist-3 level,
the quark polarization independence of the spin alignment of vector mesons.

DOI: 10.1103/PhysRevD.89.014024 PACS numbers: 13.66.Bc, 13.85.Ni, 13.87.Fh, 13.88.+e

I. INTRODUCTION

Fragmentation function is one of the most important
physical quantities in describing the hadron production
in high energy reactions. It quantifies the hadronization of
quarks and/or gluons that occur in every high energy
reaction process where hadron is produced and is therefore
a necessary ingredient in any complete description of
processes involving hadron production. The study of the
fragmentation function provides not only such an important
ingredient in describing high energy reactions but also
important information on the properties of quantum
chromodynamics (QCD) and is therefore a standing topic
in the field of high energy physics. Much progress has been
made and summarized in a number of recent reviews [1].
Much attention has been attracted recently, in particular in
the spin dependence [2–20]. This provides a new window
to study fragmentation functions, to test hadronization
models, and to learn the properties of QCD.
Like parton distribution functions, parton fragmentation

functions can be defined in terms of the quark and gluon
field operators in a gauge invariant form. The relationship
between such gauge invariant fragmentation functions and
the differential cross section is essential to the study of such
fragmentation functions and to the description of high
energy reactions. Such a relationship can be established
using the collinear expansion technique applied to the
corresponding reaction. To study the unpolarized reactions,
collinear approximation is often valid to high accuracy and
the leading twist contributions are usually enough for the

description of hadron production without polarizations.
This is in fact also the case in most of the current studies
where only leading twist contributions are considered.
However, it is unclear whether higher twist effects are
also negligible in the polarized cases. In particular, in the
cases where transverse momentum is considered and the
azimuthal asymmetry is studied, such higher twist effects
can be very important. It is therefore necessary and
important to make a study including the leading and
higher-twist contributions in a systematic way.
Our plan is to make such a systematic study of higher

twist effects in quark fragmentation processes. In this
paper, we start with inclusive hadron production in eþe−
annihilation at high energies. We apply the collinear
expansion technique to this process and present the
formalism for calculating leading and higher-twist contri-
butions in a consistent and systematic way. We carry out the
calculations up to twist-3 for spin-1=2 as well as spin-1
hadrons using this formalism. We present the results
obtained for the hadronic tensors, the differential cross
sections, and the polarizations of hadrons in different
cases. We also show how to proceed the calculations for
contributions at twist-4 level and present the results for
spin-1=2 particle production as an example.
The rest of this paper is organized as follows. In Sec. II,

we present the formalism for calculating leading and higher-
twist contributions using the collinear expansion technique.
In Sec. III, we carry out the calculations for the hadronic
tensors for spin-0, spin-1=2, and spin-1 hadrons and present
the corresponding results up to twist-3. In Sec. IV, we
present the results for the differential cross sections and the
polarizations of the hadrons. In Sec. V, we discuss the twist-
4 contributions and present the results for spin-1/2 hadrons.
We make a summary and give an outlook in Sec. VI.

*songyk@ustc.edu.cn
†liang@sdu.edu.cn
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II. THE FORMALISM

We consider the inclusive hadron production process,
eþe− → hþ X, as illustrated in Fig. 1. We use l1 and l2 to
denote the 4-momenta of the incoming electron and
positron, and q ¼ l1 þ l2 to denote the 4-momentum
of the intermediate gauge boson. The momentum of the
quark is denoted by k and that of the produced hadron is
denoted by p.
To be explicit, we consider eþe− annihilation into

hadrons either via electromagnetic interaction with the
exchange of a virtual photon or via weak interaction with
the exchange of a Z0 boson. We do not consider the
interference term and the results apply to reactions near the
Z0 pole where only the weak interaction term is considered
or the energy is much lower than Z0 mass where only
electromagnetic interaction is needed. In this case, we get
the differential cross section as given by

dσ¼ g4Z
32s

Lμ0ν0ðl1; l2ÞDμ0μ
F ðqÞDν0ν%

F ðqÞWμνðq;p;SÞ
d3p

ð2πÞ22Ep
:

(1)

Here Lμ0ν0ðl1; l2Þ is the leptonic tensor and for reactions
with unpolarized leptons,

Lμ0ν0ðl1; l2Þ ¼
1

4
Tr½Γe

μ0l1Γ
e
ν0 l2'; (2)

where we use Γe
μ0 instead of γμ0 since the intermediate

boson can be a photon or a Z0 boson. In the case that
the intermediate boson is a Z0 boson (weak interaction),
we have Γe

μ0 ¼ γμ0ðceV − ceAγ
5Þ while Γe

μ0 ¼ γμ0 or

equivalently cV ¼ 1 and cA ¼ 0 if it is a photon
(electromagnetic interaction). Correspondingly, the propa-
gator is Dμ0μ ¼ ðgμ0μ − qμ0qμ=M2

ZÞ=½ðQ2 −M2
ZÞ þ iΓZMZ'

and Dμ0μ ¼ gμ0μ=Q2, respectively. The weak coupling
gZ ¼ g= cos θW ¼ e= sin θW cos θW , where e is the elec-
tron charge and θW is theWeinberg angle. We note that, due
to current conservation qμLμν ¼ 0, the second part of the
Z0 propagator does not contribute in this case. The leptonic
tensor for Z0 exchange is given by

Lμ0ν0ðl1; l2Þ ¼ ce1½l1μ0l2ν0 þ l1ν0l2μ0 − ðl1 · l2Þgμ0ν0 '

þ ice3εμ0ν0ρσl
ρ
1l

σ
2; (3)

where ce1 ¼ ðceVÞ2 þ ðceAÞ2 and ce3 ¼ 2ceVc
e
A.

The hadronic tensor Wμν is defined as

Wμνðq;p;SÞ¼ 1

2π

X

X

ð2πÞ4δ4ðq−p−PXÞh0jJνð0Þjp;S;Xi

× hp;S;XjJμð0Þj0i: (4)

To the leading order, the hadronic tensor is shown in
Fig. 2(a) and is given by

Wð0Þ
μν ðq; p; SÞ ¼

Z
d4k
ð2πÞ4

Tr½Ĥð0Þ
μν ðk; qÞΠ̂ð0Þðk; p; SÞ': (5)

It is given by a trace of the calculable hard part,

Ĥð0Þ
μν ðk; qÞ ¼ Γq

μðq − kÞΓq
νð2πÞδþððq − kÞ2Þ; (6)

and the matrix element defined by

Π̂ð0Þðk;p;SÞ¼ 1

2π

X

X

Z
d4ξe−ikξh0jψð0ÞjhXihhXjψ̄ðξÞj0i:

(7)

Here, as well as in the rest of this paper, unless explicitly
stated, a summation over the quark flavor and color is
implicit and the flavor index is omitted. In fact, the hard
part as that given in Eq. (6) is independent of quark color so

FIG. 1. Illustrating diagram for inclusive hadron production in
eþe− annihilation.

FIG. 2. The first few Feynman diagrams as examples of the diagram series with exchange of j gluon(s). In (a), (b), and (c), we see the
case for j ¼ 0, 1, and 2, respectively. The gluon momentum in (b) is k1 − k2, while in (c), they are k − k1 and k2 − k, respectively.
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that the summation over color leads simply to a color factor
Nc ¼ 3. This should be included in the final result of the
cross section. Also, we use quark as an explicit example.
All the expressions can be extended to include antiquark
contributions. We use the same forms for the expressions so
that we can simply include the antiquark contributions by
extending the sum over flavors to antiquarks as well. There
is no essential difference between the calculations for
quarks and those for antiquarks. The results are similar
and we will specify if there is any difference in the
corresponding places in the rest of this paper.
It is well known that, because the two quark fields in the

matrix element Π̂ð0Þ do not share the same space-time
coordinate, Π̂ð0Þ is not local (color) gauge invariant. To get
the gauge invariant form, we need to consider the final-state
interaction in QCD, and apply the collinear expansion
technique [21,22]. The collinear expansion was first
applied to deeply inelastic lepton-nucleon scattering
(DIS) and provides a unique way to obtain a consistent
formalism that relates the gauge invariant parton distribu-
tion and/or correlation functions to the measurable quan-
tities such as the differential cross section including leading
as well as higher-twist contributions. It has been recently
extended to semi-inclusive DIS with nucleon and nucleus
targets for jet production [23–27] and corresponding
expressions for the azimuthal asymmetries and nuclear
dependences have been obtained. It is therefore also
necessary to apply collinear expansion to eþe− annihilation

to obtain the corresponding formalism in order to establish
the relationship between the differential cross section and
the fragmentation functions. We now summarize the main
steps and results in the following.

A. Gauge invariance and collinear expansion

To get the gauge invariant form for the fragmentation
function in eþe− annihilation, we need to consider the
multiple gluon scattering similar to those considered in
deep inelastic scattering [21]. In this case, we need to
consider the diagrams with exchange of j ¼ 1; 2;…
gluon(s) between the blob and the lower fermion line in
Fig. 2(a). As examples, we show those with exchange of
one and two gluons in Figs. 2(b) and 2(c).
Taking such multiple gluon scattering into account, the

hadronic tensor is given by

Wμν ¼
X

j;c

Wðj;cÞ
μν ¼ Wð0Þ

μν þWð1;LÞ
μν þWð1;RÞ

μν þ ( ( ( ; (8)

where we use the superscript to denote the contribution
from the Feynman diagram with exchange of j ¼ 0; 1; 2;…
gluon(s) and c denotes the position of the cut line which
takes L or R for j ¼ 1, c ¼ L, M, or R for j ¼ 2 and
corresponds to Figs. 2(b1), 2(b2), 2(c1), 2(c2), and
2(c3), respectively. For the case with one gluon exchange,
we have

Wð1;cÞ
μν ðq; p; SÞ ¼

Z
d4k1
ð2πÞ4

d4k2
ð2πÞ4

Tr½Ĥð1;cÞρ
μν ðk1; k2; qÞΠ̂

ð1;cÞ
ρ ðk1; k2; p; SÞ'; (9)

where c ¼ L or R and the hard parts are given by

Ĥð1;LÞρ
μν ðk1; k2; qÞ ¼ Γq

μðq − k1Þγρ
k2 − q

ðk2 − qÞ2 − iϵ
Γq
νð2πÞδþððq − k1Þ2Þ; (10)

Ĥð1;RÞρ
μν ðk1; k2; qÞ ¼ Γq

μ
k1 − q

ðk1 − qÞ2 þ iϵ
γρðq − k2ÞΓ

q
νð2πÞδþððq − k2Þ2Þ; (11)

and the soft matrices are defined as

Π̂ð1;LÞ
ρ ðk1; k2; p; SÞ ¼

1

2π

X

X

Z
d4ξd4ηe−ik1ξe−iðk2−k1Þηh0jgAρðηÞψð0ÞjhXihhXjψ̄ðξÞj0i; (12)

Π̂ð1;RÞ
ρ ðk1; k2; p; SÞ ¼

1

2π

X

X

Z
d4ξd4ηe−ik1ξe−iðk2−k1Þηh0jψð0ÞjhXihhXjψ̄ðξÞgAρðηÞj0i: (13)

For j ¼ 2, the corresponding results are shown by Figs. 2(c1), 2(c2), and 2(c3), and are given by

HIGHER-TWIST CONTRIBUTION TO FRAGMENTATION … PHYSICAL REVIEW D 89, 014024 (2014)

014024-3



Wð2;cÞ
μν ðq; p; SÞ ¼

Z
d4k1
ð2πÞ4

d4k2
ð2πÞ4

d4k
ð2πÞ4

Tr½Ĥð2;cÞρσ
μν ðk1; k; k2; qÞΠ̂

ð2;cÞ
ρσ ðk1; k; k2; p; SÞ'; (14)

where c ¼ L, M, or R, and the hard parts are given by

Ĥð2;LÞρσ
μν ðk1; k; k2; qÞ ¼ Γq

μðq − k1Þγρ
k − q

ðk − qÞ2 − iϵ
γσ

k2 − q
ðk2 − qÞ2 − iϵ

Γq
νð2πÞδþððq − k1Þ2Þ; (15)

Ĥð2;MÞρσ
μν ðk1; k; k2; qÞ ¼ Γq

μ
k1 − q

ðk1 − qÞ2 þ iϵ
γρðq − kÞγσ k2 − q

ðk2 − qÞ2 − iϵ
Γq
νð2πÞδþððq − kÞ2Þ; (16)

Ĥð2;RÞρσ
μν ðk1; k; k2; qÞ ¼ Γq

μ
k1 − q

ðk1 − qÞ2 þ iϵ
γρ

k − q
ðk − qÞ2 þ iϵ

γσðq − k2ÞΓ
q
νð2πÞδþððq − k2Þ2Þ; (17)

and the soft matrices are defined as

Π̂ð2;LÞ
ρσ ðk1; k; k2; p; SÞ ¼

1

2π

X

X

Z
d4ξd4η1d4η2e−ik1ξe−iðk−k1Þη1e−iðk2−kÞη2 × h0jgAρðη1ÞgAσðη2Þψð0ÞjhXihhXjψ̄ðξÞj0i;

(18)

Π̂ð2;MÞ
ρσ ðk1; k; k2; p; SÞ ¼

1

2π

X

X

Z
d4ξd4η1d4η2e−ik1ξe−iðk−k1Þη1e−iðk2−kÞη2 × h0jgAσðη2Þψð0ÞjhXihhXjψ̄ðξÞgAρðη1Þj0i;

(19)

Π̂ð2;RÞ
ρσ ðk1; k; k2; p; SÞ ¼

1

2π

X

X

Z
d4ξd4η1d4η2e−ik1ξe−iðk−k1Þη1e−iðk2−kÞη2 × h0jψð0ÞjhXihhXjψ̄ðξÞgAρðη1ÞgAσðη2Þj0i;

(20)

We note that none of such soft matrices is local (color) gauge invariant. To get the gauge invariant form, we need to apply
the collinear expansion as proposed in [21], which is carried out in the following four steps as summarized in [23].
(1) Make a Taylor expansion of all the hard parts around ki ¼ p=zi, e.g.,

Ĥð0Þ
μν ðk; qÞ ¼ Ĥð0Þ

μν ðzÞ þ
∂Ĥð0Þ

μν ðzÞ
∂kρ ωρ0

ρ kρ0 þ
1

2

∂2Ĥð0Þ
μν ðzÞ

∂kρ∂kσ ωρ0
ρ kρ0ωσ0

σ kσ0 þ ( ( ( ; (21)

Ĥð1;LÞρ
μν ðk1; k2; qÞ ¼ Ĥð1;LÞρ

μν ðz1; z2Þ þ
∂Ĥð1;LÞρ

μν ðz1; z2Þ
∂k1σ ωσ0

σ k1σ0 þ
∂Ĥð1;LÞρ

μν ðz1; z2Þ
∂k2σ ωσ0

σ k2σ0 þ ( ( ( ; (22)

where, different from that for deeply inelastic scattering [23], for the fragmentation process, zi is defined as
zi ¼ pþ=kþi . The momentum of the hadron is taken as p ¼ pþn̄, i.e., we use the light cone coordinate and take
the direction of motion of the hadron as the z direction. The unit vectors in this coordinate system are denoted by n̄, n,
and n⊥. In eþe− annihilation, we choose the lepton plane as the xoz plane and the transverse component of
the momentum of the incident electron is taken as the x direction, and that of incident positron is in the minus
x direction. The projection operator ωρ0

ρ is defined as ωρ0
ρ ≡ gρ0ρ − n̄ρnρ

0
. We also use the short notations such as

Ĥð0Þ
μν ðzÞ≡ Ĥð0Þ

μν ðk; qÞjk¼p=z, ∂Ĥð0Þ
μν ðzÞ=∂kρ ≡ ∂Ĥð0Þ

μν ðk; qÞ=∂kρjk¼p=z, and so on.
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Here, as usual in the collinear expansion, we neglect
the n component of the hadron momentum. This
component should take the form ðM2=2pþÞn, where
M is the hadron mass. Compared to the n̄ component,
it is suppressed by a factor ðM=pþÞ2 and contributes
only at twist-4 level. This was discussed in the past in
e.g., [28,29] and we will also come back to this point
in Sec. V where examples of twist-4 contributions
are given.

(2) Decompose the gluon fields into longitudinal and
transverse components, i.e.,

AρðyÞ ¼ AþðyÞn̄ρ þ ωρ0
ρ Aρ0ðyÞ: (23)

(3) Apply the Ward identities such as

∂Ĥð0Þ
μν ðzÞ
∂kρ ¼ −Ĥð1;LÞρ

μν ðz; zÞ − Ĥð1;RÞρ
μν ðz; zÞ; (24)

∂Ĥð1;LÞρ
μν ðz1; z2Þ
∂k1;σ ¼ −Ĥð2;LÞρσ

μν ðz1; z1; z2Þ

− Ĥð2;MÞρσ
μν ðz1; z1; z2Þ; (25)

∂Ĥð1;LÞρ
μν ðz1; z2Þ
∂k2;σ

¼ −Ĥð2;RÞρσ
μν ðz1; z2; z2Þ; (26)

pρĤ
ð1;LÞρ
μν ðz1; z2Þ ¼ − z1z2

z2 − z1 − iϵ
Hð0Þ

μν ðz1Þ; (27)

pρĤ
ð1;RÞρ
μν ðz1; z2Þ ¼ − z1z2

z1 − z2 þ iϵ
Hð0Þ

μν ðz2Þ; (28)

pρĤ
ð2;LÞρσ
μν ðz1; z; z2Þ ¼ − z1z

z − z1 − iϵ
Hð1;LÞσ

μν ðz1; z2Þ:

(29)

(4) Add all the terms with the same hard part together
and we obtain the hadronic tensor in the gauge
invariant form as given by

Wμν ¼
X

j;c

~Wðj;cÞ
μν ¼ ~Wð0Þ

μν þ ~Wð1;LÞ
μν þ ~Wð1;RÞ

μν þ ( ( ( ;

(30)

where the tilded W’s are given by

~Wð0Þ
μν ðq; p; SÞ ¼

Z
dkþ

2πpþ Tr½Ĥð0Þ
μν ðzÞΞ̂ð0Þðz; p; S;nÞ';

(31)

~Wð1;LÞ
μν ðq; p; SÞ ¼

Z
dkþ1
2πpþ

dkþ2
2πpþ Tr½Ĥð1;LÞρ

μν ðz1; z2Þ

× ωρ0
ρ Ξ̂

ð1;LÞ
ρ0 ðz1; z2; p; S; nÞ'; (32)

~Wð1;RÞ
μν ðq; p; SÞ ¼

Z
dkþ1
2πpþ

dkþ2
2πpþ Tr½Ĥð1;RÞρ

μν ðz1; z2Þ

× ωρ0
ρ Ξ̂

ð1;RÞ
ρ0 ðz1; z2; p; S; nÞ'; (33)

~Wð2;LÞ
μν ðq; p; SÞ ¼

Z
dkþ1
2πpþ

dkþ2
2πpþ

dkþ

2πpþ

× Tr½Ĥð2;LÞρσ
μν ðz1; z; z2Þωρ0

ρ ωσ0
σ

× Ξ̂ð2;LÞ
ρ0σ0 ðz1; z; z2; p; S; nÞ'; (34)

~Wð2;MÞ
μν ðq; p; SÞ ¼

Z
dkþ1
2πpþ

dkþ2
2πpþ

dkþ

2πpþ

× Tr½Ĥð2;MÞρσ
μν ðz1; z; z2Þωρ0

ρ ωσ0
σ

× Ξ̂ð2;MÞ
ρ0σ0 ðz1; z; z2; p; S; nÞ'; (35)

~Wð2;RÞ
μν ðq; p; SÞ ¼

Z
dkþ1
2πpþ

dkþ2
2πpþ

dkþ

2πpþ

× Tr½Ĥð2;RÞρσ
μν ðz1; z; z2Þω

ρ0
ρ ωσ0

σ

× Ξ̂ð2;RÞ
ρ0σ0 ðz1; z; z2; p; S; nÞ': (36)

Here, the new correlator Ξ̂ðjÞ’s are given by

Ξ̂ð0Þðz; p; S; nÞ ¼
X

X

Z
pþdξ−

2π
e−ikþξ−

× h0jL†ð0;∞Þψð0ÞjhXi
× hhXjψ̄ðξ−ÞLðξ−;∞Þj0i; (37)
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Ξ̂ð1;LÞ
ρ ðz1; z2; p; S; nÞ ¼

X

X

Z
pþdξ−pþdη−

2π
e−ik

þ
1 ξ

−−iðkþ2 −kþ1 Þη−

× h0jL†ðη−;∞ÞDρðη−ÞL†ð0; η−Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i; (38)

Ξ̂ð1;RÞ
ρ ðz1; z2; p; S; nÞ ¼

X

X

Z
pþdξ−pþdη−

2π
e−ik

þ
1 ξ

−−iðkþ2 −kþ1 Þη−

× h0jL†ð0;∞Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−; η−ÞD←ρðη−ÞLðη−;∞Þj0i; (39)

Ξ̂ð2;LÞ
ρσ ðz1; z; z2; p; S; nÞ ¼

X

X

Z
pþdξ−pþdη−1 p

þdη−2
2π

e−ik
þ
1 ξ

−−iðkþ−kþ1 Þη−1 −iðkþ2 −kþÞη−2

× h0jL†ðη−1 ;∞ÞDρðη−1 ÞL†ðη−2 ; η−1 ÞDσðη−2 ÞL†ð0; η−2 Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i;
(40)

Ξ̂ð2;MÞ
ρσ ðz1; z; z2; p; S; nÞ ¼

X

X

Z
pþdξ−pþdη−1 p

þdη−2
2π

e−ik
þ
1
ξ−−iðkþ−kþ

1
Þη−1 −iðkþ2 −kþÞη−2

× h0jL†ðη−2 ;∞ÞDσðη−2 ÞL†ð0; η−2 Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−; η−1 ÞDρðη−1 ÞLðη−1 ;∞Þj0i;
(41)

Ξ̂ð2;RÞ
ρσ ðz1; z; z2; p; S; nÞ ¼

X

X

Z
pþdξ−pþdη−1 p

þdη−2
2π

e−ik
þ
1 ξ

−−iðkþ−kþ1 Þη−1 −iðkþ2 −kþÞη−2

× h0jL†ð0;∞Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−; η−1 ÞDρðη−1 ÞLðη−1 ; η−2 ÞDσðη−2 ÞLðη−2 ;∞Þj0i; (42)

whereDρðηÞ ¼ −i∂ρ þ gAρðηÞ is the covariant derivative, and the gauge link L is given by the following path integral,

Lðξ−;∞Þ ¼ Peig
R

∞
ξ− dη−Aþðη−Þ ¼ 1þ ig

Z
∞

ξ−
dη−Aþðη−Þ þ ðigÞ2

Z
∞

ξ−
dη−1

Z
η−1

ξ−
dη−2 A

þðη−2 ÞAþðη−1 Þ þ ( ( ( ; (43)

which guarantees the correlation matrices gauge invariant.

The hard parts in the ~WðjÞ’s such as those given by Eqs. (20)–(25) depend only on the longitudinal momentum fractions
of the quarks and they are given by

Ĥð0Þ
μν ðzÞ ¼ Γq

μðq − p=zÞΓq
νð2πÞδþððq − p=zÞ2Þ; (44)

Ĥð1;LÞρ
μν ðz1; z2Þ ¼ Γq

μðq − p=z1Þγρ
p=z2 − q

ðp=z2 − qÞ2 − iϵ
Γq
νð2πÞδþððq − p=z1Þ2Þ; (45)

Ĥð1;RÞρ
μν ðz1; z2Þ ¼ Γq

μ
p=z1 − q

ðp=z1 − qÞ2 þ iϵ
γρðq − p=z2ÞΓ

q
νð2πÞδþððq − p=z2Þ2Þ; (46)
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Ĥð2;LÞρσ
μν ðz1; z; z2Þ ¼ Γq

μðq − p=z1Þγρ
p=z − q

ðp=z − qÞ2 − iϵ
γσ

p=z2 − q
ðp=z2 − qÞ2 − iϵ

Γq
ν × ð2πÞδþððq − p=z1Þ2Þ; (47)

Ĥð2;MÞρσ
μν ðz1; z; z2Þ ¼ Γq

μ
p=z1 − q

ðp=z1 − qÞ2 þ iϵ
γρðq − p=zÞγσ p=z2 − q

ðp=z2 − qÞ2 − iϵ
Γq
ν × ð2πÞδþððq − p=zÞ2Þ; (48)

Ĥð2;RÞρσ
μν ðz1; z; z2Þ ¼ Γq

μ
p=z1 − q

ðp=z1 − qÞ2 þ iϵ
γρ

p=z− q
ðp=z − qÞ2 þ iϵ

γσðq − p=z2ÞΓ
q
ν × ð2πÞδþððq − p=z2Þ2Þ: (49)

We will refer to them as the collinear-expanded hard parts in the following of this paper. We also note that
Ĥð1;LÞρ

μν ðk1; k2; qÞ ¼ γ0Hð1;RÞρ†
νμ ðk2; k1; qÞγ0, Ĥð2;LÞρσ

μν ðk1; k; k2; qÞ ¼ γ0Hð2;RÞσρ†
νμ ðk2; k; k1; qÞγ0, and ~Wð1;LÞ

μν ðq; p; SÞ ¼
~Wð1;RÞ%
νμ ðq; p; SÞ, ~Wð2;LÞ

μν ðq; p; SÞ ¼ ~Wð2;RÞ%
νμ ðq; p; SÞ. We give the expressions for both of them for symmetry.

We emphasize that all the results given by Eqs. (31)–(36)
are derived from the series of diagrams such as those shown
in Fig. 2 following the four steps for the collinear expansion
described above. As in [21], we have carried out the
derivations up to the second order in g2 and have been
convinced that such derivations can be extended to even
higher orders if needed. The gauge links inside the
correlators Ξ̂ðjÞ’s are obtained in the derivations without
any arbitrariness. For example, all the first terms in the
expansion of the WðjÞ’s with Aþ component of gluon field
are summed together to give the ~Wð0Þ where all the
corresponding terms containing Aþ and j > 0 go to the
gauge link. The first derivative term in the expansion with
ωρ0
ρ kρ0 is converted to ωρ0

ρ ∂ρ0 and combines with the
ωρ0
ρ Aρ0ðyÞ term to form the covariant derivative, and so

on. We see also clearly why the projection operator ωρ0
ρ

exists in ~WðjÞ for j > 0.
We also emphasize that using collinear expansion we

obtain the hadronic tensor as a sum of the ~W’s. Each of
these ~WðjÞ ’s receives contributions from all the infinite
number of diagrams in the diagram series as illustrated by
Fig. 2. The contributions from this diagram series are
reorganized by using collinear expansion so that the
correlators have the gauge invariant forms given by
Eqs. (37)–(42). We should note that the contributions of
these ~WðjÞ’s to the hadronic tensor contain the leading and
higher twists as well and can be calculated order by order.
The leading contribution in each ~WðjÞ is twist-ð2þ jÞ. We
should also note that, when going to twist-4 or higher, there
are also contributions from other diagrams that are not
included in this diagram series. To make a complete study
in that case, we need also to take those contributions into
account. In this paper, we concentrate only on the results
from this series of diagrams but specify clearly if more
diagrams should be taken into account for a complete
calculation for the specified case.

B. Simplifying the results

Another very nice feature of the results is that, because
the collinear-expanded hard parts given by Eqs. (44)–(49)
contain only the longitudinal components of the quark
momenta and also due to the presence of the projection
operator ωρ0

ρ in the cases for j > 0, these results can be
simplified a great deal. The collinear-expanded hard parts,
multiplied by the projection operator(s) ωρ0

ρ for j > 0, can
e.g., be simplified into

Ĥð0Þ
μν ðzÞ ¼ z2Bπĥ

ð0Þ
μν δðz − zBÞ; (50)

Ĥð1;LÞρ
μν ðz1; z2Þω

ρ0
ρ ¼ − πz2B

2p · q
ĥð1Þρμν δðz1 − zBÞω

ρ0
ρ ; (51)

Ĥð1;RÞρ
μν ðz1; z2Þω

ρ0
ρ ¼ − πz2B

2p · q
γ0ĥ

ð1Þρ†
νμ γ0δðz2 − zBÞω

ρ0
ρ ;

(52)

Ĥð2;MÞρσ
μν ðz1; z; z2Þω

ρ0
ρ ωσ0

σ ¼ 2πz2B
ð2p · qÞ2

ĥð2Þρσμν δðz − zBÞω
ρ0
ρ ωσ0

σ ;

(53)

Ĥð2;LÞρσ
μν ðz1;z;z2Þω

ρ0
ρ ωσ0

σ ¼ 2πz2B
ð2p ·qÞ2

!
pσĥð1Þρμν − z2zBN̂

ð2Þρσ
μν

z2−zB− iϵ

"

×δðz1−zBÞωρ0
ρ ωσ0

σ ; (54)
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Ĥð2;RÞρσ
μν ðz1; z; z2Þωρ0

ρ ωσ0
σ ¼ 2πz2B

ð2p · qÞ2

!
pσĥð1Þρ†νμ − z1zBN̂

ð2Þρσ†
νμ

z1 − zB þ iϵ

"
δðz2 − zBÞωρ0

ρ ωσ0
σ ; (55)

where zB ≡ 2p · q=Q2, ĥð0Þμν ¼ Γq
μnΓq

ν=pþ, ĥð1Þρμν ¼
Γq
μnγρn̄Γq

ν , N̂ð2Þρσ
μν ¼ q−ΓμγρnγσΓν, and ĥð2Þρσμν ¼

pþΓμn̄γρnγσn̄Γν=2. We see in particular the following
two features: (1) the z dependence of the collinear-
expanded hard parts, multiplied by the projection operator
ωρ0
ρ for j > 0, is usually very simple and in particular for

j ¼ 0 and 1, it is contained only in the δ function; (2) these
hard parts for j > 0 usually depend on a smaller number
of parton momenta compared to the corresponding hard
parts before the collinear expansion. For example,
Ĥð1;cÞρ

μν ðz1; z2Þωρ0
ρ depends only on one parton momentum

(either z1 or z2); Ĥ
ð2;MÞρ
μν ðz1; z; z2Þωρ0

ρ ωσ0
σ depends only on z,

while Ĥð2;LÞρ
μν ðz1; z; z2Þω

ρ0
ρ ωσ0

σ or Ĥð2;RÞρ
μν ðz1; z; z2Þω

ρ0
ρ ωσ0

σ
each has two terms one of which depends only on either
z1 or z2, the other depends on both z1 and z2, but none of
them depends on z. This implies that we can carry out the
integration over some of the parton momenta in the
corresponding correlators and simplify the expressions
for the hadronic tensors. The results are given by

~Wð0Þ
μν ðq; p; SÞ ¼

1

2
Tr½ĥð0Þμν Ξ̂ð0ÞðzB; p; S; nÞ'; (56)

~Wð1;LÞ
μν ðq; p; SÞ ¼ − 1

4p · q
Tr½ĥð1Þρμν ωρ0

ρ Ξ̂
ð1Þ
ρ0 ðzB; p; S; nÞ';

(57)

~Wð1;RÞ
μν ðq; p; SÞ ¼ − 1

4p · q
Tr½ĥð1Þρ†νμ ωρ0

ρ Ξ̂
ð1Þ†
ρ0 ðzB; p; S; nÞ';

(58)

~Wð2;MÞ
μν ðq;p;SÞ¼ 1

4ðp ·qÞ2
Tr½ĥð2Þρσμν ωρ0

ρ ωσ0
σ Ξ̂

ð2AÞ
ρ0σ0 ðzB;p;S;nÞ';

(59)

~Wð2;LÞ
μν ðq; p; SÞ ¼ 1

4ðp · qÞ2
Tr½ĥð1Þρμν ωρ0

ρ Ξ̂
ð2BÞ
ρ0 ðzB; p; S; nÞ

þ N̂ð2Þρσ
μν ωρ0

ρ ωσ0
σ Ξ̂

ð2CÞ
ρ0σ0 ðzB; p; S; nÞ'; (60)

~Wð2;RÞ
μν ðq; p; SÞ ¼ 1

4ðp · qÞ2
Tr½ĥð1Þρ†νμ ωρ0

ρ Ξ̂
ð2BÞ†
ρ0 ðzB; p; S; nÞ

þ N̂ð2Þρσ†
νμ ωρ0

ρ ωσ0
σ Ξ̂

ð2CÞ†
ρ0σ0 ðzB; p; S; nÞ'; (61)

where one correlator Ξ̂ð1Þ
ρ and three correlators Ξ̂ð2AÞ

ρσ , Ξ̂ð2BÞ
ρ ,

and Ξ̂ð2CÞ
ρσ are involved for ~Wð1Þ and ~Wð2Þ respectively and

they are defined as

Ξ̂ð1Þ
ρ ðzB; p; S; nÞ≡ 1

2π

Z
dð1=z2ÞΞ̂

ð1;LÞ
ρ ðzB; z2; p; S;nÞ;

(62)

Ξ̂ð2AÞ
ρσ ðzB; p; S; nÞ≡ 1

ð2πÞ2

Z
dð1=z1Þdð1=z2Þ

× Ξ̂ð2;MÞ
ρσ ðz1; zB; z2; p; S; nÞ; (63)

Ξ̂ð2BÞ
ρ ðzB; p; S; nÞ≡ 1

ð2πÞ2

Z
dð1=zÞdð1=z2Þpσ

× Ξ̂ð2;LÞ
ρσ ðzB; z; z2; p; S; nÞ; (64)

Ξ̂ð2CÞ
ρσ ðzB; p; S; nÞ≡ 1

ð2πÞ2

Z
dð1=zÞdð1=z2Þ

×
z2zB

z2 − zB − iϵ
Ξ̂ð2;LÞ
ρσ ðzB; z; z2; p; S; nÞ:

(65)

The corresponding field operator expressions are

Ξ̂ð1Þ
ρ ðz; p; S; nÞ ¼

X

X

Z
pþdξ−

2π
e−ipþξ−=z

× h0jL†ð0;∞ÞDρð0Þψð0ÞjhXi
× hhXjψ̄ðξ−ÞLðξ−;∞Þj0i; (66)
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Ξ̂ð2AÞ
ρσ ðz; p; S; nÞ ¼

X

X

Z
pþdξ−

2π
e−ipþξ−=z × h0jL†ð0;∞ÞDρð0Þψð0ÞjhXihhXjψ̄ðξ−ÞDσðξ−ÞLðξ−;∞Þj0i; (67)

Ξ̂ð2BÞ
ρ ðz; p; S; nÞ ¼

X

X

Z
pþdξ−

2π
e−ipþξ−=z × pσh0jL†ð0;∞ÞDρð0ÞDσð0Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i; (68)

Ξ̂ð2CÞ
ρσ ðz; p; S; nÞ ¼

X

X

Z
pþdξ−pþdη−

2π
dz2
2π

1

z22

z2z
z2 − z − iϵ

e−ipþξ−=z−ipþη−=z2

× h0jL†ðη−;∞ÞDρðη−ÞDσðη−ÞL†ð0; η−Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i: (69)

We note once more that, because a the hard part Ĥð1;RÞρ
μν ðz1; z2Þωρ0

ρ depends only on one of the two parton momenta, we can
carry out the integration over the other and obtain the correlator Ξð1Þ

ρ that depends only on the corresponding one parton
momentum. In terms of the field operators, this implies that the gluon field or the covariant derivative is at the same space-
time point as the quark (or antiquark) field. This is similar for the cases with even higher j. Again, such results are derived in
this systematic formulation using collinear expansion.
To proceed further, we expand the involved matrices Ξ̂’s in terms of γ matrices. Since both ĥð0Þμν , ĥ

ð1Þρ
μν , ĥð2Þρσμν , and N̂ð2Þρσ

μν all
have odd number of γ matrices, only γα and γ5γα terms in the expansions of the Ξ̂’s contribute. For example, for j ¼ 0 and 1,
we denote

Ξ̂ð0Þðz; p; S; nÞ ¼ Ξð0Þ
α ðz; p; S; nÞγα þ ~Ξð0Þ

α ðz; p; S; nÞγ5γα þ ( ( ( ; (70)

Ξ̂ð1Þ
ρ ðz; p; S; nÞ ¼ Ξð1Þ

ρα ðz; p; S; nÞγα þ ~Ξð1Þ
ρα ðz; p; S; nÞγ5γα þ ( ( ( ; (71)

and obtain the hadronic tensors as

~Wð0Þ
μν ðq; p; SÞ ¼

1

2
fTr½ĥð0Þμν γα'Ξð0Þ

α ðzB; p; S; nÞ þ Tr½ĥð0Þμν γ5γα' ~Ξð0Þ
α ðzB; p; S; nÞg; (72)

~Wð1;LÞ
μν ¼ − 1

4p · q
fTr½ĥð1Þρμν γα'ωρ0

ρ Ξ
ð1Þ
ρ0αðzB; p; S; nÞ þ Tr½ĥð1Þρμν γ5γα'ω

ρ0
ρ ~Ξð1Þ

ρ0αðzB; p; S; nÞg; (73)

~Wð1;RÞ
μν ¼ − 1

4p · q
fTr½ĥð1Þρ†νμ γα†'ωρ0

ρ Ξ
ð1Þ%
ρ0α ðzB; p; S; nÞ þ Tr½ĥð1Þρ†νμ ðγ5γαÞ†'ωρ0

ρ ~Ξð1Þ%
ρ0α ðzB; p; S; nÞg: (74)

The involved matrix elements are given by

Ξð0Þ
α ðz; p; S; nÞ ¼

X

X

Z
pþdξ−

8π
e−ikþξ−Tr½γαh0jL†ð0;∞Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i'; (75)

~Ξð0Þ
α ðz; p; S;nÞ ¼

X

X

Z
pþdξ−

8π
e−ikþξ−Tr½γαγ5h0jL†ð0;∞Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i'; (76)
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Ξð1Þ
ρα ðz; p; S; nÞ ¼

X

X

Z
pþdξ−

8π
e−ikþξ−Tr½γαh0jL†ð0;∞ÞDρð0Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i'; (77)

~Ξð1Þ
ρα ðz; p; S; nÞ ¼

X

X

Z
pþdξ−

8π
e−ikþξ−Tr½γαγ5h0jL†ð0;∞ÞDρð0Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i': (78)

They are Lorentz vectors and tensors of second rank with
different behaviors under space reflection, respectively. We
note in particular that, as can be seen from Eqs. (75)–(78),
the dimension of Ξð0Þ

α or ~Ξð0Þ
α is 1 while that for Ξð1Þ

ρα or ~Ξð1Þ
ρα

is 2. This is important when we analyze the Lorentz
structure of them in terms of the 4-vectors p, n, and so
on. Also because of parity invariance, we have

Ξð0Þ
α ðz; p; S; nÞ ¼ Ξð0Þαðz; ~p;− ~S; ~nÞ; (79)

~Ξð0Þ
α ðz; p; S; nÞ ¼ − ~Ξð0Þαðz; ~p;− ~S; ~nÞ; (80)

where the tilded vector denotes ~pμ ¼ ðp0;−p⃗Þ. We empha-
size that S in the argument in general specifies the spin state
of the hadron h. In the case of spin-1=2 hadron, S is just the
polarization vector as usually used and we have Eqs. (79)
and (80) for parity invariance. For spin-1 hadron, the whole
set of variables needed to describe the spin state are more
complicated. This will be discussed in a precise manner in
the next section where hadrons with different spins are
considered separately. It should also be mentioned that, as it
is known in literature (see e.g., [2–4] and the references
given there), that time-reversal invariance does not con-
strain the form of fragmentation functions because of the
presence of final state interactions between the hadron h
and remaining multihadron state X in the jet.
Based on the Lorentz covariance, we can analyze the

Lorentz structure of these matrix elements Ξð0Þ
α , ~Ξð0Þ

α , Ξð1Þ
ρα ,

and ~Ξð1Þ
ρα in terms of the involved four vectors p, n, and S.

We express these matrix elements in terms of different
Lorentz covariants constructed from p, n, and S and scalar
functions of z. These functions of z are just different
components of fragmentation functions. For example, an
analysis of Ξð0Þ

α and ~Ξð0Þ
α up to twist-3 is given in [4].

Inserting such expressions into Eqs. (72)–(74), we can
calculate the hadronic tensors and the differential cross
sections and obtain their relationship to the fragmentation
functions. Such relationships are in general different for
hadrons with different spins. We calculate them for spin-0,
spin-1=2, and spin-1hadrons respectively in thenext sections.
We note that calculations of differential cross sections

including twist-3 contributions have been carried out in
literature such as [6] for even more complicated process

eþ þ e− → h1 þ h2 þ X via electromagnetic interaction
for spin-1=2 hadrons. As most of the higher twist calcu-
lations carried out earlier, the approaches given there are
different from that presented in the current paper in the
following way. In contrast to what we do here, the
calculations given there do not start with a formalism after
the collinear expansion. Instead, they usually start from the
hadronic tensors such as the Wð0Þ

μν , W
ð1;LÞ
μν , and Wð1;RÞ

μν given
by Eqs. (5) and (9) obtained directly from the Feynman
diagrams as given in Figs. 2(a) and 2(b), extract the twist-2
and -3 terms by making appropriate approximations during
the calculations, and insert the gauge link(s) whenever
needed to guarantee the gauge invariance. It is not studied
whether collinear expansion can be applied to such a
process in a systematic way. A systematic formalism is
lacking and it is in particular not obvious where the gauge
link comes from and whether the calculations extend to
even higher twists. In this way, one usually obtains the
same results for leading twist contributions as we do using
the formalism after the collinear expansion but might get
different expressions at higher twists since the higher twist
correlators are usually different. The higher twist correla-
tors used in the formalism after collinear expansion are
the Ξ̂’s such as those given by Eqs. (38) and (39) where
covariant derivatives are used while those before the
expansion are the Π̂’s such as those given by Eqs. (11)
and (13) where gluon fields are used in the corresponding
places.

III. THE HADRONIC TENSOR UP TO TWIST-3

In order to obtain the hadronic tensor and the cross
section, we need to expand the Ξð0Þ

α ; ~Ξð0Þ
α ;Ξð1Þ

ρα ; ~Ξð1Þ
ρα ;…,

according to the Lorentz structure. This expansion depends
strongly on the spin of the produced hadron h. In this
section, we present the results for the hadronic tensors up to
twist-3 for spin-0, spin-1=2, and spin-1 hadrons, respec-
tively. The results for the differential cross sections for
hadrons with different spins are presented in the next
section.

A. Spin-0 hadrons

The situation is simplest for spin-0 hadrons such as
mesons in the JP ¼ 0− octet. This is also the same if we do
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not consider the polarization for hadrons with non-
zero spins.
For spin-0 hadrons, to the leading twist, we need only to

consider

zΞð0Þαðz; p; nÞ ¼ pαD1ðzÞ þ ( ( ( : (81)

By inserting Eq. (81) into Eq. (72), we obtain

~Wð0Þ
μν ðq; pÞ ¼

1

2zB
Trðĥð0Þμν pÞD1ðzBÞ: (82)

We carry out the trace Trðĥð0Þμν pÞ ¼ −4ðcq1dμν þ icq3ε⊥μνÞ,
where dμν ¼ gμν − nμn̄ν − n̄μnν, ε⊥μν ¼ εμνρσn̄ρnσ , cq1 ¼
ðcqVÞ2 þ ðcqAÞ2 and cq3 ¼ 2cqVc

q
A, and obtain

~Wð0Þ
μν ðq; pÞ ¼ − 2

zB
ðcq1dμν þ icq3ε⊥μνÞD1ðzBÞ; (83)

where D1ðzÞ is given by

D1ðzÞ ¼
z
4

X

X

Z
dξ−

2π
e−ipþξ−=zTr½γþh0jL†ð0;∞Þψð0ÞjhXi

× hhXjψ̄ðξ−ÞLðξ−;∞Þj0i' (84)

is the leading twist fragmentation function in the unpolar-
ized case. It can easily be seen that qμdμν ¼ 0 and
qμε⊥μν ¼ 0, so that qμWð0Þ

μν ðq; pÞ ¼ 0.
For eþe− → γ% → qq̄ → hþ X, i.e., eþe− annihilation

via electromagnetic interaction, the corresponding results
can be obtained by putting cqV ¼ 1 and cqA ¼ 0, i.e., cq1 ¼ 1
and cq3 ¼ 0 into the above-mentioned equations. Hence,
we have

~Wð0Þem
μν ðq; pÞ ¼ − 2

zB
dμνD1ðzBÞ: (85)

We see that, for the weak interaction, the hadronic tensor
given by Eq. (83) contains a symmetric and an antisym-
metric part while for electromagnetic interaction only the
symmetric part is left.
In can easily be shown that the twist-3 contribution in

this case is equal to zero. This can be shown by analyzing
the Lorentz structure of Ξð1Þ

ρα and ~Ξð1Þ
ρα . Hence, the result

given in Eq. (83) is also the complete hadronic tensor for
spin-0 hadron production up to twist-3.

B. Spin-1=2 hadrons

For spin-1=2 hadrons, the polarization is described by
the polarization vector Sμ. At high energies, this polariza-
tion vector Sμ is usually decomposed into the transverse
polarization vector Sμ⊥ and the helicity λh components,

Sμ ¼ λh
pþ

M
n̄μ þ Sμ⊥ − λh

M
2pþ nμ: (86)

We see that, compared to the n̄ component, the n⊥ and the n
components are suppressed by a factor M=pþ and
ðM=pþÞ2 respectively after the Lorentz boost hence con-
tribute only at higher twists. Up to twist-3, we need to
consider ~Wð0Þ

μν ðq; pÞ and ~Wð1Þ
μν ðq; pÞ. After an analysis

of the Lorentz structure of the corresponding correlators
Ξð0Þαðz; p; S; nÞ, ~Ξð0Þαðz; p; S; nÞ, Ξð1Þραðz; p; S; nÞ, and
~Ξð1Þραðz; p; S;nÞ as functions of p, n, and S, we obtain
that, up to twist-3, we need to consider the following terms:

zΞð0Þαðz; p; S; nÞ ¼ pαD1ðzÞ þMεαγ⊥ S⊥γDTðzÞ þ ( ( ( ;
(87)

z ~Ξð0Þαðz; p; S; nÞ ¼ λhpαΔD1LðzÞ þMSα⊥ΔDTðzÞ þ ( ( ( ;
(88)

zΞð1Þραðz; p; S; nÞ ¼ Mεργ⊥ S⊥γpαξð1Þ⊥SðzÞ þ ( ( ( ; (89)

z ~Ξð1Þραðz; p; S; nÞ ¼ iMSρ⊥p
α ~ξð1Þ⊥SðzÞ þ ( ( ( ; (90)

where all D1, DT , ΔDT , ΔD1L, ξ
ð1Þ
⊥S, and ~ξð1Þ⊥S are scalar

functions of z.
Carrying out the traces, such as

Tr½hð0Þμν γαε
αγ
⊥ 'S⊥γ ¼ 4ðcq1nfμε⊥νgγS

γ
⊥ þ icq3n½μS⊥ν'Þ=pþ,

Tr½hð0Þμν γ5p' ¼ 4ðcq3dμν þ icq1ε⊥μνÞ, where AfμBνg ≡
AμBν þ AνBμ and A½μBν' ≡ AμBν − AνBμ, we obtain that,
for spin-1=2 hadrons, up to twist-3, the hadronic tensors are
given by

~Wð0Þ
μν ðq;p;SÞ¼

2

zB

#
−ðcq1dμνþicq3ε⊥μνÞD1ðzBÞ

þλhðc
q
3dμνþicq1ε⊥μνÞΔD1LðzBÞ

þM
pþðc

q
1nfμε⊥νgγS

γ
⊥þicq3n½μS⊥ν'ÞDTðzBÞ

−M
pþðc

q
3nfμS⊥νg−icq1n½με⊥ν'γS

γ
⊥ÞΔDTðzBÞ

$
;

(91)

~Wð1;LÞ
μν ðq; p; SÞ ¼ 2

zB

M
p · q

ðcq1pνε⊥μγS
γ
⊥ − icq3pνS⊥μÞ

× ½ξð1Þ⊥SðzBÞ þ ~ξð1Þ⊥SðzBÞ': (92)

We see that, besides D1ðzÞ defined in the previous sub-
section, there is another leading twist fragmentation func-
tion ΔD1LðzÞ that contributes to the hadronic tensor and
ΔD1LðzÞ is defined by
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λhΔD1LðzÞ ¼
z
4

X

X

Z
dξ−

2π
e−ipþξ−=zTr½γþγ5h0jL†ð0;∞Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i': (93)

The two twist-3 fragmentation functions, DTðzÞ and ΔDTðzÞ, are given by

MS2⊥DTðzÞ ¼
z
4

X

X

Z
pþdξ−

2π
e−ipþξ−=zεαγ⊥ S⊥γTr½γαh0jL†ð0;∞Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i'; (94)

MS2⊥ΔDTðzÞ ¼
z
4

X

X

Z
pþdξ−

2π
e−ipþξ−=zTr½S⊥γ5h0jL†ð0;∞Þψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i'; (95)

where S2⊥ ¼ −jS⃗⊥j2. The other two twist-3 fragmentation
functions, ξð1Þ⊥SðzÞ and ~ξð1Þ⊥SðzÞ, are not independent. They are
related to DTðzÞ and ΔDTðzÞ. In fact, using the QCD
equation of motion γ ·DðxÞψðxÞ ¼ 0, we obtain

pþ

z
Ξð0Þρðz; p; S;nÞ ¼ −nα½ReΞð1Þραðz; p; S; nÞ

þ ερ⊥σIm ~Ξð1Þσαðz; p; S; nÞ'; (96)

pþ

z
~Ξð0Þρðz; p; S;nÞ ¼ −nα½Re ~Ξð1Þραðz; p; S; nÞ

þ ερ⊥σImΞð1Þσαðz; p; S; nÞ': (97)

This leads to

DTðzÞ ¼ −zRe½ξð1Þ⊥SðzÞ þ ~ξð1Þ⊥SðzÞ'; (98)

ΔDTðzÞ ¼ zIm½ξð1Þ⊥SðzÞ þ ~ξð1Þ⊥SðzÞ': (99)

By inserting Eqs. (98) and (99) into Eq. (92), adding the
contribution from ~Wð0Þ

μν and that from ~Wð1Þ
μν together, we

obtain the complete result for the hadronic tensor up to
twist-3 as given by

Wμνðq; p; SÞ ¼
2

zB

#
−ðcq1dμν þ icq3ε

μν
⊥ ÞD1ðzBÞ þ λhðc

q
3dμν þ icq1ε⊥μνÞΔD1LðzBÞ

þ M
p · q

½cq1ðq − 2p=zBÞfμε⊥νgγS
γ
⊥ þ icq3ðq − 2p=zBÞ½μS⊥ν''DTðzBÞ

− M
p · q

½cq3ðq − 2p=zBÞfμS⊥νg − icq1ðq − 2p=zBÞ½με⊥ν'γS
γ
⊥'ΔDTðzBÞ

$
: (100)

It is easy to verify that qμWμν ¼ 0.
We note that the first term in this case is the same as that obtained in the case for spin-0 hadrons. The other terms are spin

dependent hence do not exist for the spin-0 case. The second term depends on the longitudinal component of the
polarization while the other terms depend on the transverse components of the polarization. We will come back to this point
in the next section.
If we consider eþe− → γ% → qq̄ → hþ X, we have

Wem
μν ðq; p; SÞ ¼

2

zB

#
−dμνD1ðzBÞ þ iλhε⊥μνΔD1LðzBÞ þ

M
p · q

ðq − 2p=zBÞfμε⊥νgγS
γ
⊥DTðzBÞ

þ i
M
p · q

ðq − 2p=zBÞ½με⊥ν'γS
γ
⊥ΔDTðzBÞ

$
: (101)

We see that the terms remaining include a symmetric spin independent leading twist term, an antisymmetric longitudinal
spin dependent leading twist term, and also a twist-3 transverse spin dependent term. They can give us measurable effects
that we will discuss in the next section.
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C. Vector mesons

For the spin-1 particle, we need to use the 3 × 3 spin
density matrix ρ to describe the polarization state. We all
know that ρ is a Hermite and normalized (i.e., Trρ ¼ 1)
matrix hence has 8 degrees of freedom. This means that we
need eight independent variables to describe the polariza-
tion state of the vector meson. We choose to decompose ρ
into a polarization vector Sμ and a polarization tensor Tμν.
In the rest frame of the vector meson, ρ takes the following
form [30]:

ρ ¼ 1

3

!
1þ 3

2
SiΣi þ 3TijΣij

"
; (102)

where
Pi is the spin matrix for the spin-1 state, Σij is

defined as

Σij ¼ 1

2

!!
ΣiΣj þ ΣjΣi

"
− 2

3
δij

"
: (103)

Tij is a traceless symmetric tensor and is parametrized in
terms of SLL, SiLT , and SijTT ,

T ¼ 1

2

 − 2
3 SLL þ SxxTT SxyTT SxLT

SxyTT − 2
3 SLL − SxxTT SyLT

SxLT SyLT
4
3 SLL

!

; (104)

so that the spin density matrix ρ is given by

ρ ¼

0

BB@

1þSLL
3 þ SL

2

ðSxLT−iSyLTÞþðSxT−iSyTÞ
2
ffiffi
2

p SxxTT−iSxyTT
2

ðSxLTþiSyLTÞþðSxTþiSyT Þ
2
ffiffi
2

p 1−2SLL
3

ð−SxLTþiSyLTÞþðSxT−iSyTÞ
2
ffiffi
2

p

SxxTTþiSxyTT
2

ð−SxLT−iSyLTÞþðSxTþiSyT Þ
2
ffiffi
2

p 1þSLL
3 − SL

2

1

CCA: (105)

The polarization vector Sμ is similar to what we have for
the spin-1=2 particle and in a moving frame of the vector
meson, Sμ behaves as a Lorentz vector in the same form as
that given in Eq. (86) and satisfies p · S ¼ 0. The physical
meaning of the polarization vector Sμ is also clear and is
similar to that for the spin-1=2 particle. Tμν ¼ Tνμ is a
symmetric Lorentz tensor satisfying pμTμν ¼ 0. The differ-
ent components of Tμν have also clear physical signifi-
cance. The ranges of values of these parameters are e.g.,
−1 ≤ SLL ≤ 1

2, −1 ≤ SiLT ≤ 1, and −1 ≤ SijTT ≤ 1. From
Eq. (105), we see clearly that SLL is directly related to ρ00
that describes the so-called spin alignment of vector meson.
Other components of Tij are related to the probabilities for
the vector meson to be in different transversely polarized
states. A detailed description can e.g., be found in the
Appendix of [30].
Using such a decomposition of ρ, we should obtain the

quark correlators as functions of n, p, Sμ, SLL, S
μ
LT , and

SμνTT . For the inclusive process, the contributing terms up to
twist-3 are given by

zΞð0Þαðz; p; S; nÞ ¼ pα½D1ðzÞ þ SLLD1LLðzÞ'
þMεαγ⊥ S⊥γDTðzÞ þMSαLTDLTðzÞ
þ ( ( ( ; (106)

z ~Ξð0Þαðz; p; S; nÞ ¼ λhpαΔD1LðzÞ þMSα⊥ΔDTðzÞ

þMεαγ⊥ SLT;γΔDLTðzÞ þ ( ( ( ; (107)

zΞð1Þραðz; p; S; nÞ ¼ pα½Mεργ⊥ S⊥γξ
ð1Þ
⊥SðzÞ þMSρLTξ

ð1Þ
LTSðzÞ'

þ ( ( ( ; (108)

z ~Ξð1Þραðz; p; S; nÞ ¼ ipα½MSρ⊥ ~ξ
ð1Þ
⊥SðzÞ

þ iMεργ⊥ SLT;γ ~ξ
ð1Þ
LTSðzÞ' þ ( ( ( : (109)

By inserting the above expansion into Eqs. (72)–(74),
carrying out the traces, and by making use of the relation-
ships such as

DLTðzÞ ¼ −zRe½ξð1ÞLTSðzÞ − ~ξð1ÞLTSðzÞ'; (110)

ΔDLTðzÞ ¼ −zIm½ξð1ÞLTSðzÞ − ~ξð1ÞLTSðzÞ'; (111)

derived from the equation of motion to replace ξð1ÞLTS or ~ξ
ð1Þ
LTS

byDLT orΔDLT’s, we obtain the hadronic tensor for vector
meson as
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Wμνðq; p; SÞ ¼
2

zB

#
−ðcq1dμν þ icq3ε

μν
⊥ Þ½D1ðzBÞ þ SLLD1LLðzBÞ' þ λhðc

q
3dμν þ icq1ε⊥μνÞΔD1LðzBÞ

þ M
p · q

½cq1ðq − 2p=zBÞfμε⊥νgγS
γ
⊥ þ icq3ðq − 2p=zBÞ½μS⊥ν''DTðzBÞ

þ M
p · q

½cq1ðq − 2p=zBÞfμSLT;νg − icq3ðq − 2p=zBÞ½με⊥ν'γS
γ
LT 'DLTðzBÞ

− M
p · q

½cq3ðq − 2p=zBÞfμS⊥νg − icq1ðq − 2p=zBÞ½με⊥ν'γS
γ
⊥'ΔDTðzBÞ

− M
p · q

½cq3ðq − 2p=zBÞfμε⊥νgγS
γ
LT þ icq1ðq − 2p=zBÞ½μSLT;ν''ΔDLTðzBÞ

$
: (112)

Again, we can obtain the corresponding hadronic tensor for eþe− → γ% → qq̄ → hþ X by putting c1 ¼ 1 and c3 ¼ 0
into Eq. (112), and it is given by

Wem
μν ðq; p; SÞ ¼

2

zB

#
−dμν½D1ðzBÞ þ SLLD1LLðzBÞ' þ iλhε⊥μνΔD1LðzBÞ þ

M
p · q

ðq − 2p=zBÞfμε⊥νgγS
γ
⊥DTðzBÞ

þ M
p · q

ðq − 2p=zBÞfμSLT;νgDLTðzBÞ þ i
M
p · q

ðq − 2p=zBÞ½με⊥ν'γS
γ
⊥ΔDTðzBÞ

− i
M
p · q

ðq − 2p=zBÞ½μSLT;ν'ΔDLTðzBÞ
$
: (113)

From the results given by Eqs. (112) and (113), we see a similar structure as that in the case for spin-1=2 hadrons, i.e., a
spin independent leading twist term that is the same as in the case for spin-0 hadrons, a longitudinal polarization dependent
leading twist term, and a number of transverse spin dependent twist-3 terms. We have, for vector mesons, in particular also a
leading twist SLL term which is related to the spin alignment and we will discuss in detail in the next section.

IV. THE CROSS SECTION AND POLARIZATION
OF HADRONS PRODUCED

Byinserting thehadronic tensorsobtained in the last section
into Eq. (1), we obtain the differential cross sections in the
corresponding cases. From the cross sections, we obtain not
only the production rates of the hadrons but also the
polarization of the hadrons produced in different cases. In
this section, we present the results for hadrons with different
spins respectively. In thispaper,weconsideronly the reactions
with unpolarized electrons and unpolarized positions.

A. Spin-0 hadrons

By inserting Eq. (83) into Eq. (1), we obtained the
differential cross section for inclusive hadron production in
eþe− annihilation as

Ep
dσ
d3p

¼ 2α2

zQ4
χT0ðyÞD1ðzÞ; (114)

where α ¼ e2=4π is the fine structure constant, χ ¼
Q4=½ðQ2 −M2

ZÞ2 þ Γ2
ZM

2
Z'sin42θW is a kinematic factor

depending on Z0 mass and Weinberg angle, the coefficient
T0 is a function of y and is given by

Tq
0ðyÞ ¼ cq1c

e
1AðyÞ − cq3c

e
3BðyÞ; (115)

and AðyÞ ¼ ð1 − yÞ2 þ y2, BðyÞ ¼ 1 − 2y. Here, y is
the longitudinal momentum fraction of electron defined
as y≡ l1 · n=k · n ¼ zlþ1 =p

þ so that l1 ¼ ypþn̄=zþ
ð1 − yÞzQ2n=ð2pþÞ þ l⊥, l⊥ ¼ ð0; 0; l⊥x; 0Þ, jl⃗⊥j¼ jl⊥xj¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1−yÞ

p
Q. In the eþe− center of mass frame,

y ¼ ð1þ cos θÞ=2, where θ is the angle between the
incident electron and the produced quark. In terms of θ,
AðyÞ ¼ ð1þ cos2 θÞ=2 and BðyÞ ¼ − cos θ. The coeffi-
cient function T0ðyÞ is flavor dependent and is essentially
the relative weight for the contribution from the given
flavor.
We note that the differential cross section is in general a

function of z ¼ zB and y. We can change the variables
and obtain the differential cross section with respect to z
and y as
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d2σ
dzdy

¼ 2πα2

Q2
χT0ðyÞD1ðzÞ: (116)

We emphasize once more that z ¼ pþ=kþ is the light cone
momentum fraction of the quark carried by the hadron and
y ¼ lþ1 =k

þ is the light cone momentum fraction of the
incident electron which is determined by the angle between
the electron and the quark and is given by y ¼ cos2ðθ=2Þ in
the c.m. frame of eþe−. The y or θ dependence is contained
in the coefficient function T0ðyÞ. We can carry out the
integration over y or θ and obtain

dσ
dz

¼ 2πα2

Q2
χt0D1ðzÞ; (117)

where t0 ¼
R
dyT0ðyÞ ¼ 2cq1c

e
1=3 is a flavor dependent

constant.
The corresponding results for eþe− → γ% → qq̄ → hþ

X are obtained by putting cq1 ¼ 1 and cq3 ¼ 0 into the
corresponding equations. In this case, we have,
T0ðyÞ ¼ AðyÞ, independent of the flavor, the kinematic
factor χ ¼ 1 and g4z=16 should be replaced by e4e2q. Hence,

Ep
dσem

d3p
¼

2α2e2q
zQ4

½ð1 − yÞ2 þ y2'D1ðzÞ: (118)

In terms of z and y, we have

dσem

dzdy
¼

2πα2e2q
Q2

½ð1 − yÞ2 þ y2'D1ðzÞ: (119)

Carrying out the integration over y or θ, we have

dσem

dz
¼

4πα2e2q
3Q2

D1ðzÞ: (120)

If we write out the summations over flavor and color
explicitly, we have, e.g.,

d2σ
dzdy

¼ Nc

X

q

2πα2

Q2
χTq

0ðyÞD
q→h
1 ðzÞ; (121)

where the sum over q runs for all quark and antiquark
flavors involved, and for antiquark, it can easily be seen that
Tq̄
0ðyÞ ¼ Tq

0ð1 − yÞ, and the fragmentation function is
defined as

Dq̄→h
1 ðzÞ ¼ z

4

X

X

Z
dξ−

2π
e−ipþξ−=zh0jψ̄ð0ÞγþLð0;∞ÞjhXi

× hhXjL†ðξ−;∞Þψðξ−;∞Þj0i: (122)

For eþe− → γ% → qq̄ → hþ X, the cross section takes
the form

dσem

dz
¼
X

q

4πα2

3Q2
e2qD

q→hþX
1 ðzÞ; (123)

which is just the result used usually when describing
hadron production in eþe− annihilation at high energies
in the unpolarized case.

B. Spin-1=2 hadrons

For hadrons with nonzero spins, we can calculate not
only the differential cross section but also the polarizations.
Here, we present the results for cross section and polari-
zation for spin-1=2 hadrons.

1. The cross section

We insert the hadronic tensor given by Eq. (100) into
Eq. (1), and we obtain the differential cross section for spin-
1=2 hadrons as

Ep
dσ
d3p

¼ 2α2

zQ4
χ

#
½T0ðyÞD1ðzÞþλhT1ðyÞΔD1LðzÞ'

þ 2M
p ·q

½εl⊥S⊥⊥ T2ðyÞDTðzÞþ l⊥ ·S⊥T3ðyÞΔDTðzÞ'
$
:

(124)

We see that, besides the first term that is equivalent to what
we have for spin-0 hadrons, there are three other spin
dependent terms where the coefficient functions TiðyÞ’s for
quarks are given by

T1ðyÞ ¼ −cq3ce1AðyÞ þ cq1c
e
3BðyÞ; (125)

T2ðyÞ ¼ −cq3ce3 þ cq1c
e
1BðyÞ; (126)

T3ðyÞ ¼ cq1c
e
3 − cq3c

e
1BðyÞ; (127)

and these for the antiquarks are related to those for the
corresponding quarks in the following way:

Tq̄
1ðyÞ ¼ Tq

1ð1 − yÞ; (128)

Tq̄
2ðyÞ ¼ −Tq

2ð1 − yÞ; (129)

Tq̄
3ðyÞ ¼ −Tq

3ð1 − yÞ: (130)

We see also that T2ðyÞ and T3ðyÞ are just the first derivative
of T0ðyÞ and T1ðyÞ respectively, i.e., T2ðyÞ ¼
−ð1=2ÞdTq

0ðyÞ=dy and T3ðyÞ ¼ −ð1=2ÞdT1ðyÞ=dy.
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Denote the angle between S⃗⊥ and l⃗⊥ by φs, we obtain
εl⊥S⊥⊥ ¼ jl⊥jjS⊥j sin ϕs and l⊥ · S⊥ ¼ −jl⊥jjS⊥j cos ϕs.
jl⊥j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞ

p
Q ¼ sin θQ=2. So the cross section

can also be expressed as

Ep
dσ
d3p

¼ χ
2α2

zQ4

#
½T0ðyÞD1ðzÞ þ λhT1ðyÞΔD1LðzÞ'

þ 4M
zQ

jS⃗⊥j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞ

p
½T2ðyÞDTðzÞ sin ϕs

− T3ðyÞΔDTðzÞ cos ϕs'
$
: (131)

We see that ΔD1LðzÞ is responsible for the longitudinal
polarization of the hadron while ΔDTðzÞ and DTðzÞ are
sources of the transverse polarizations in and transverse to
the leptonic plane, respectively. We will come back to this
point in the next subsection.
In terms of z and y, we have

dσ
dzdy

¼ χ
2πα2

Q2

#
½T0ðyÞD1ðzÞ þ λhT1ðyÞΔD1LðzÞ'

þ 4M
zQ

jS⃗⊥j½ ~T2ðyÞDTðzÞ sin ϕs

− ~T3ðyÞΔDTðzÞ cos ϕs'
$
; (132)

where ~TiðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞ

p
TiðyÞ. Carrying out the integra-

tion over y (or θ), we have

dσ
dz

¼ χ
2πα2

Q2

#
½t0D1ðzÞ þ λht1ΔD1LðzÞ'

þ 4M
zQ

jS⃗⊥j½~t2DTðzÞ sin ϕs − ~t3ΔDTðzÞ cos ϕs'
$
;

(133)

where ti ≡
R
dyTiðyÞ are flavor dependent constants deter-

mined by cq1 and cq3 , i.e., t1 ¼ −2cq3ce1=3, ~t2 ¼ −πcq3ce3=8,
and ~t3 ¼ πcq1c

e
3=8 .

By inserting c1 ¼ 1 and c3 ¼ 0 into these equations, we
obtain the corresponding results for eþe− → γ% →
qq̄ → hþ X, where we have T1ðyÞ ¼ ~T3ðyÞ ¼ 0 and
~T2ðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞ

p
BðyÞ ¼ − sin 2θ=2. Hence, the cross

section is given by

Ep
dσem

d3p
¼

2α2e2q
zQ4

#
D1ðzÞð1þ cos2θÞ

− jS⃗⊥j
4M
zQ

DTðzÞ sin 2θ sin ϕs

$
: (134)

In terms of z and y, we have

dσem

dzdy
¼

2πα2e2q
Q2

#
½ð1 − yÞ2 þ y2'D1ðzÞ

− jS⃗⊥j
4M
zQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞ

p
ð1 − 2yÞDTðzÞ sin ϕs

$
:

(135)

Carrying out the integration over y, we see that all the twist-
3 terms vanish and we obtain

dσem

dz
¼ 4πα2

3Q2
e2qD1ðzÞ; (136)

which is the same as that obtained for the spin-0 hadron.

2. Hadron polarization

From Eq. (132), we see that the spin-1=2 hadron
produced in eþe− → Z → qq̄ → hþ X is longitudinally
polarized. The longitudinal polarization is given by

PLhðz; yÞ ¼
T1ðyÞΔD1LðzÞ
T0ðyÞD1ðzÞ

: (137)

We write out the flavor index and summation over the
flavor explicitly so that Eq. (137) takes the following form:

PLhðz; yÞ ¼
P

qT
q
1ðyÞΔD

q→h
1L ðzÞ

P
qT

q
0ðyÞD

q→h
1 ðzÞ

: (138)

We recall that Tq
0ðyÞ represents the relative weight for

the contribution from quark (antiquark) of flavor q and
Eq. (138) can be rewritten as

PLhðz; yÞ ¼
P

qPqðyÞT
q
0ðyÞΔD

q→h
1L ðzÞ

P
qT

q
0ðyÞD

q→h
1 ðzÞ

; (139)

where PqðyÞ ¼ Tq
1ðyÞ=T

q
0ðyÞ is the polarization of the

quark produced. Such quark polarization has been calcu-
lated explicitly in e.g., [31] and the numerical results can be
found there. It is also clear that ΔDq→h

1L ðzÞ is nothing else
but the spin transfer in the fragmentation process.
We see that the polarization is in general different for

hadrons produced in different θ directions. The θ or y
dependence comes from the y dependence of Ti which
describes the relative weights and polarizations of the
quarks of different flavors. To study the fragmentation
functions, we can integrate over y or θ and obtain

PLhðzÞ ¼
P

qt
q
0PqΔD

q→h
1L ðzÞ

P
qt

q
0D

q→h
1 ðzÞ

; (140)

where Pq ¼ tq1=t
q
0 ¼ −cq3=cq1 is the polarization of the

quark of flavor q averaged over different directions.
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It is also very interesting to see, from Eq. (132), that
although the quark and/or antiquark is longitudinally
polarized in eþe− → Z → qq̄ → hþ X, the produced
hadron h can possess also a transverse polarization at
the twist-3 level. We take the helicity frame of h, i.e., take
the direction of motion of h as the z direction, and we
obtain

Phxðz; yÞ ¼ − 4M
zQ

P
q
~Tq
3ðyÞΔD

q→h
T ðzÞ

P
qT

q
0ðyÞD

q→h
1 ðzÞ

; (141)

Phyðz; yÞ ¼
4M
zQ

P
q
~Tq
2ðyÞD

q→h
T ðzÞ

P
qT

q
0ðyÞD

q→h
1 ðzÞ

; (142)

for given y or θ. Here, we recall once more that the x and y
directions are defined in or transverse to the leptonic plane.
Integrating over y, we obtain

PhxðzÞ ¼ − 4M
zQ

P
q~t

q
3ΔD

q→h
T ðzÞ

P
qt

q
0D

q→h
1 ðzÞ

; (143)

PhyðzÞ ¼
4M
zQ

P
q~t

q
2D

q→h
T ðzÞ

P
qt

q
0D

q→h
1 ðzÞ

: (144)

If we consider eþe− → γ% → qq̄ → hþ X, we see that
the longitudinal polarization and the transverse polarization
inside the leptonic plane vanish, i.e., Pem

Lhðz; yÞ ¼
Pem
hx ðz; yÞ ¼ 0. However, we can still have a nonvanishing

polarization transverse to the leptonic plan at the twist-3
level. The result is given by

Pem
hy ðz; yÞ ¼

4M
zQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞ

p
ð1 − 2yÞ

ð1 − yÞ2 þ y2

P
qe

2
qD

q→h
T ðzÞ

P
qe

2
qD

q→h
1 ðzÞ

;

(145)

or in terms of the angle θ,

Pem
hy ðz; θÞ ¼ − 2M

zQ
sin 2θ

1þ cos2θ

P
qe

2
qD

q→h
T ðzÞ

P
qe

2
qD

q→h
1 ðzÞ

: (146)

This polarization vanishes also after the integration over y
or θ, i.e., Pem

Lh ¼ Pem
hx ¼ Pem

hy ¼ 0.
We note that such a transverse polarization has also been

expected in [6] where calculations of differential cross
section of two hadron production eþe− → h1 þ h2 þ X
have been carried out starting directly from the hadronic
tensor reading from the diagrams similar to those given by
Fig. 2. The results take the same form when appropriate
gauge link is inserted the fragmentation functions
given there.
Experimental studies on the longitudinal polarization of

theΛ hyperon have been carried out by ALEPH and OPAL
collaborations at LEP [13,14]. The data show a clear
polarization and can be used to study the properties in
general and to obtain a parametrization of ΔD1LðzÞ in
particular. Such parametrizations exist already in literature
and can be found e.g., in [7]. We will not go to the details in
that direction in this paper.
Little discussion can be found on the transverse polari-

zation presented above for eþe− annihilation and there is
no measurement available yet. We emphasize that such
measurements are very useful in studying higher effects in
general and provide us direct information on the twist-3
fragmentation function given in Eq. (94) in particular.

C. Vector meson

For hadrons with spin-1, e.g., the vector mesons, the
spin dependence is more complicated thus making the
study even more interesting. Here, we present the results for
the differential cross section and the results for the spin
alignment factor ρ00 in the following.

1. The cross section

By inserting the hadronic tensor Eq. (112) into Eq. (1),
we get the cross section,

E
dσ
d3p

¼ 2α2

zQ4
χ

#
½T0ðyÞD1ðzÞ þ T0ðyÞSLLD1LLðzBÞ þ λhT1ðyÞΔD1LðzÞ'

þ 4M
zQ

jS⃗⊥j½ ~T2ðyÞ sin φsDTðzÞ − ~T3ðyÞ cos φsΔDTðzÞ'

þ 4M
zQ

jS⃗LT j½− ~T2ðyÞ cos φLTDLTðzÞ þ ~T3ðyÞ sin φLTΔDLTðzÞ'
$
; (147)

where φLT is the angle between S⃗LT and l⃗⊥. We see that the cross section in general depends on the polarization of the vector
meson. We also see that the coefficient functions TiðyÞ describe the relative weights and polarizations of the quarks and/or
antiquarks of different flavors. They are the same as those defined in Sec. IV B for production of spin-1/2 hadrons.
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In terms of z and y, we have

dσ
dzdy

¼ χ
2πα2

Q2

#
½T0ðyÞD1ðzÞ þ T0ðyÞSLLD1LLðzBÞ

þ λhT1ðyÞΔD1LðzÞ' þ
4M
zQ

jS⃗⊥j½ ~T2ðyÞ sin φsDTðzÞ

− ~T3ðyÞ cos φsΔDTðzÞ'

þ 4M
zQ

jS⃗LT j½− ~T2ðyÞ cos φLTDLTðzÞ

þ ~T3ðyÞ sin φLTΔDLTðzÞ'
$
: (148)

Carrying out the integration over y or θ, we have

dσ
dz

¼ 2πα2

Q2
χ

#
½t0D1ðzÞ þ t0SLLD1LLðzÞ þ λht1ΔD1LðzÞ'

þ 4M
zQ

jS⃗⊥j½~t2 sin φsDTðzÞ − ~t3 cos φsΔDTðzÞ'

þ 4M
zQ

jS⃗LT j½−t̄2 cos φLTDLTðzÞ

þ ~t3 sin φLTΔDLTðzÞ'
$
: (149)

For the electromagnetic interaction process eþe− →
γ% → qq̄ → hþ X, the corresponding result is obtained
by putting T0ðyÞ ¼ AðyÞ, T1ðyÞ ¼ ~T3ðyÞ ¼ 0, ~T2ðyÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞ

p
BðyÞ, and we have

E
dσem

d3p
¼

2α2e2q
Q4z

#
AðyÞ½D1ðzÞ þ SLLD1LLðzÞ'

þ M
zQ2

BðyÞ½εl⊥S⊥⊥ DTðzÞ þ l⊥ · SLTDLTðzÞ'
$
:

(150)

In terms of z and y, we have

dσem

dzdy
¼

2πα2e2q
Q2

n
AðyÞ½D1ðzÞ þ SLLD1LLðzÞ'

þ M
zQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞ

p
BðyÞ½jS⃗⊥j sin ϕsDTðzÞ

− jS⃗LT j cos ϕLTDLTðzÞ'
o
: (151)

Carrying out the integration over y, we obtain

dσem

dz
¼ e2q

4πα2

3Q2
½D1ðzÞ þ SLLD1LLðzÞ': (152)

2. The spin alignment

Polarization of the vector meson has been studied
in [15–17] by OPAL and DELPHI at LEP where ρ00 has
been measured in the helicity frame of the vector meson.
Phenomenological studies have also been carried out in
e.g., [32]. From the results obtained above, we see clearly
that ρ00 can be expressed in terms of different components
of the fragmentation functions. We present the results in the
following.
From the differential cross section, ρ00 can be calculated

in the following way:

ρ00 ¼
dσ00

dσþþ þ dσ00 þ dσ−−
; (153)

where the superscript of σ denotes the helicity of the vector
meson. These cross sections can easily be calculated by
inserting the corresponding values for the parameters S into
Eqs. (148) and (149). For example, for dσþþ, we calculate
the cross section for vector meson in helicity state λh ¼ 1;
hence, ρþþ ¼ 1 otherwise ρmm0 ¼ 0. This implies that
SLL ¼ 1

2, SL ¼ 1, and all the other components of S are
zero. Hence, we have

dσþþ

dzdy
¼ χ

2πα2

Q2

#
T0ðyÞ½D1ðzÞ þ

1

2
D1LLðzÞ'

þ T1ðyÞΔD1LðzÞ
$
: (154)

Integrated over y, we have

dσþþ

dz
¼ χ

2πα2

Q2

#
t0

&
D1ðzÞ þ

1

2
D1LLðzÞ

'
þ t1ΔD1LðzÞ

$
:

(155)

Similarly, for λh ¼ 0, SLL ¼ −1, SL ¼ 0, and all the other
components of S equal to zero. Hence, we have

dσ00

dzdy
¼ 2πα2

Q2
χT0ðyÞ½D1ðzÞ −D1LLðzÞ'; (156)

dσ00

dz
¼ 2πα2

Q2
χt0½D1ðzÞ −D1LLðzÞ': (157)

For λh ¼ −1, SLL ¼ 1
2, SL ¼ −1, and other components are

zero, so that

dσ−−

dzdy
¼ 2πα2

Q2
χ
#
T0ðyÞ

&
D1ðzÞ þ

1

2
D1LLðzÞ

'

− T1ðyÞΔD1LðzÞ
$
; (158)
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dσ−−

dz
¼ 2πα2

Q2
χ

#
t0

&
D1ðzÞ þ

1

2
D1LLðzÞ

'
− t1ΔD1LðzÞ

$
:

(159)

Hence, we obtain ρ00 as given by

ρ00ðz; yÞ ¼
1

3
− 1

3

P
qT

q
0ðyÞD

q→h
1LL ðzÞP

qT
q
0ðyÞD

q→h
1 ðzÞ

; (160)

or integrated over y or θ,

ρ00ðzÞ ¼
1

3
− 1

3

P
qt

q
0D

q→h
1LL ðzÞP

qt
q
0D

q→h
1 ðzÞ

; (161)

where we have written out the summation over flavor
explicitly.
From Eqs. (160) and (161), without knowing any detail

of the fragmentation functions, we are already able to see
the following features for the spin alignment parameter ρ00
in eþe− annihilations. First, the spin alignment ρ00 for
vector mesons produced in eþe− annihilations does not
depend on the polarization of the quark and/or antiquark
produced at the eþe−-annihilation vertex. This can be
understood since ρ00 ¼ 1 − ðρþþ þ ρ−−Þ describes only
the difference between the vector meson in the helicity )1
and helicity zero state but has nothing to do with the quark
polarization in the helicity direction. Second, besides the
fragmentation function itself, the quark flavor dependence
comes in only in the relative production weight. Since the
fragmentation function is determined by strong interaction,
the isospin symmetry is valid and even SU(3) flavor
symmetry is approximately applicable to a good accuracy.
Furthermore, the spin structures of vector mesons of
different flavors are similar to each other. Hence, if we
consider only the light flavor vector mesons, we expect that
ρ00 is approximately the same for different mesons. Such a
feature is in contrast to the polarizations for spin-1=2
hadrons discussed in the last subsection where different
hyperons are expected to have rather different polariza-
tions. This feature for ρ00 is consistent with the data
available [15,17] and can be further checked by future
experiments.
For the electromagnetic interaction process eþe− →

γ% → qq̄ → hþ X,

ρem00 ¼ 1

3
− 1

3

P
qe

2
qD

q→h
1LL ðzÞP

qe
2
qD

q→h
1 ðzÞ

; (162)

which implies that even unpolarized quarks could lead
to longitudinally tensor polarized (SLL) vector mesons.
The qualitative features discussed above apply also here.

V. THE TWIST-4 CONTRIBUTIONS

Unlike the twist-3 contributions, in inclusive hadron
production in eþe− annihilation at high energies, the twist-
4 contributions are mostly power suppressed corrections to
the leading twist contributions whatever measurable quan-
tities that we study. Hence, the observable effects led by
these twist-4 contributions are usually not very obvious and
are difficult to separate from the leading twist contributions.
In this section, we give an example to illustrate how the
calculations for such contributions can be carried out by
using the formalism presented in Sec. II. We should note
that the twist-4 contributions that we present in this section
are results from the diagram series as illustrated in Fig. 2. It
is not intended to be a complete study of the twist-4
contributions for the reactions. There are also other sources
such as four quark correlators that contribute at twist-4. A
complete study should also take them into account. In this
section, we only present the results from the diagram series
considered in this paper to show how to calculate twist-4
contributions in the formulism described in Sec. II.
From the diagram series that we consider in this paper,

the sources of the twist-4 contributions are from the quark-
quark or quark-gluon-quark correlators such as γ−ψψ̄ ,
γ⊥ψD⊥ψ̄ , and γþψD⊥D⊥ψ̄ . These contributions are con-
tained in ~Wð0Þ

μν ðq; p; SÞ, ~Wð1Þ
μν ðq; p; SÞ, and ~Wð2Þ

μν ðq; p; SÞ,
respectively. We can pick them up from Eqs. (56)–(61) and
(66)–(69). They are given by

~Wð0;4Þ
μν ðq; p; SÞ ¼ 1

2
Tr½ĥð0Þμν Ξ̂ð0Þ− ðzB; p; S; nÞ'; (163)

~Wð1;L;4Þ
μν ðq; p; SÞ ¼ − 1

4p · q
Tr½ĥð1Þρμν ωρ

ρ0Ξ̂ð1Þ
⊥;ρ0ðzB; p; S; nÞ';

(164)

~Wð2;M;4Þ
μν ðq;p; SÞ

¼ 1

4ðp · qÞ2
Tr½ĥð2Þρσμν ωρ

ρ0ωσ
σ0Ξ̂ð2AÞ

þρ0σ0ðzB; p; S;nÞ'; (165)

~Wð2;L;4Þ
μν ðq; n; SÞ

¼ 1

4ðp · qÞ2
Tr½N̂ð2Þρσ

μν ωρ
ρ0ωσ

σ0Ξ̂ð2CÞ
ρ0σ0 ðzB; p; S;nÞ'; (166)

and ~Wð1;R;4Þ
μν ðq; p; SÞ ¼ ~Wð1;L;4Þ%

νμ ðq; p; SÞ, ~Wð2;R;4Þ
μν

ðq; p; SÞ ¼ ~Wð2;L;4Þ%
νμ ðq; p; SÞ. Here we use the number

4 in the superscript of ~W to specify twist-4 contributions.
The matrices Ξ̂ð0Þ− , Ξ̂ð1Þ

⊥ρ, and Ξ̂ð2Þ
þρσ are the (γ−, γ5γ−), (γ⊥,

γ5γ⊥), and (γþ, γ5γþ) components, respectively, of the
corresponding Ξ̂’s. They are, e.g., defined as
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Ξ̂ð0Þ− ¼ ðγ−Ξð0Þ− þ γ5γ− ~Ξ
ð0Þ
− Þ, where Ξð0Þ

α and ~Ξð0Þ
α are

defined in Eqs. (75) and (76). Ξ̂ð0Þ− corresponds to the
γ−ψψ̄ terms, similar for the others. We pick up these
contributions by analyzing the Lorentz structures of the
corresponding Ξα’s and ~Ξα’s.
The Lorentz structure of these components of the

corresponding Ξ’s that contribute at twist-4 level are
given by

zΞð0Þ
α ðz; p; S; nÞ ¼ M2

pþ D−ðzÞnα þ ( ( ( ; (167)

z ~Ξð0Þ
α ðz; p; S; nÞ ¼ λh

M2

pþ ΔD−ðzÞnα þ ( ( ( ; (168)

zΞð1Þρα ¼ iλhM2ερα⊥ ΔDð1Þ
⊥ ðzÞ þM2dραDð1Þ

⊥ ðzÞ þ ( ( ( ;
(169)

z ~Ξð1Þρα ¼ λhM2dραΔ ~Dð1Þ
⊥ ðzÞ þ iM2ερα⊥ ~Dð1Þ

⊥ ðzÞ þ ( ( ( ;
(170)

zΞð2AÞρσα ¼ iλhM2ερσ⊥ pαΔDð2ÞðzÞ þM2dρσpαDð2ÞðzÞ
þ ( ( ( ; (171)

z ~Ξð2AÞρσα ¼ λhM2dρσpαΔ ~Dð2ÞðzÞ þ iM2ερσ⊥ pα ~Dð2ÞðzÞ þ ( ( ( :

(172)

zΞð2CÞρσα ¼ M2dρσpαDð2LÞðzÞ þ iλhM2ερσ⊥ pαΔDð2LÞðzÞ;
(173)

z ~Ξð2CÞρσα ¼ M2dρσλhpαΔ ~Dð2LÞðzÞ þ iM2ερσ⊥ pα ~Dð2LÞðzÞ:
(174)

Here, the subscript of theD’s or ~D’s to specify that it comes
from n̄, ⊥ or n component, the superscript specifies from
which Ξ it originates; those with Δ are longitudinal spin
dependent, and those without Δ are spin independent. We
see that the D−ðzÞ term just corresponds to the n compo-
nent of the hadron momentum p as we mentioned in Sec. II.

Again, equation of motion γ ·DψðzÞ ¼ 0 relates

1

z2
D−ðzÞ ¼

1

z
½Dð1Þ

⊥ ðzÞ − ~Dð1Þ
⊥ ðzÞ' ¼ −½Dð2ÞðzÞ þ ~Dð2ÞðzÞ';

(175)

1

z2
ΔD−ðzÞ ¼

1

z
½Δ ~Dð1Þ

⊥ ðzÞ − ΔDð1Þ
⊥ ðzÞ'

¼ −½Δ ~Dð2ÞðzÞ þ ΔDð2ÞðzÞ': (176)

By inserting Eqs. (167)–(174) into Eqs. (56)–(61) and
carrying out the traces and simplifying the results using
Eqs. (175)–(176), we obtain the final twist-4 contributions
to the hadronic tensor,

Wð4Þ
μν ðq; p; SÞ ¼

16M2

z3Q4

#
ðq − 2p=zÞμðq − 2p=zÞν½c

q
1D−ðzÞ

− λhc
q
3ΔD−ðzÞ'

− z2

4
Q2½ðcq1dμν þ icq3ε⊥μνÞD

ð2LÞ
4 ðzÞ

þ λhðc
q
3dμν þ icq1ε⊥μνÞΔD

ð2LÞ
4 ðzÞ'

$
;

(177)

where the new symbols Dð2LÞ
4 and ΔDð2LÞ

4 are defined as

zDð2LÞ
4 ðzÞ≡ Re½ ~D2LðzÞ −Dð2LÞðzÞ'; (178)

zΔD2L
4 ðzÞ≡ Re½ΔDð2LÞðzÞ − Δ ~Dð2LÞðzÞ':

After making contraction with the leptonic tensor Lμν,
we obtain the twist-4 contributions to the cross section as

Ep
dσ
d3p

¼ 8α2M2

Q6z3
χ

#
½T4ðyÞD−ðzÞ þ T0ðyÞz2D

ð2LÞ
4 ðzÞ'

þ λh½−T5ðyÞΔD−ðzÞ þ T1ðyÞz2ΔD
ð2LÞ
4 ðzÞ'

$
;

(180)

where the two new coefficient functions of y are given by

Tq
4ðyÞ ¼ 4yð1 − yÞce1c

q
1 ¼

jl⃗⊥j
2

Q2

d2T0ðyÞ
dy2

; (181)

Tq
5ðyÞ ¼ 4yð1 − yÞce1c

q
3 ¼ − jl⃗⊥j2

Q2

d2T1ðyÞ
dy2

: (182)
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We note that Tq̄
4ðyÞ ¼ Tq

4ðyÞ and Tq̄
5ðyÞ ¼ Tq

5ðyÞ. We see
that there are terms that contribute to the unpolarized cross
section and those to the longitudinal polarization. Up to
twist-4 level, we should add these contributions to the
leading twist contributions to obtain the final results.
However, for the observables such as the production rates,
the spectra, and the longitudinal polarizations, these con-
tributions are just higher twist addenda suppressed by the
factor M2=Q2 and in general are difficult to be separated
from the leading contributions.

VI. SUMMARY AND OUTLOOK

In summary, we apply the collinear expansion to
inclusive hadron production in eþe− annihilations at high
energies. We derive the formalism that can be used to study
the leading as well as higher-twist contributions in a
systematic and consistent way. We calculate the contribu-
tions to the production of hadrons with different spins up to
twist-3 level. We also present the results for spin-1=2
hadrons at the twist-4 level. The results clearly show a
number of interesting features. In the unpolarized case or
for spin-0 hadrons, the cross section has the expression as
usually used. For hadron with spins, there are leading twist
longitudinal polarization for spin-1=2 hadrons in eþe− →
Z → qq̄ → hþ X because the initial quark and antiquark
produced here are longitudinally polarized and such polar-
izations can be transferred to the hadrons produced. There

is also spin alignment ρ00 ≠ 1=3 for spin-1 i.e., vector
mesons, and the spin alignment is independent of the
polarization of the initial quark or antiquark thus exist also
in eþe− → γ% → qq̄ → hþ X.
At the twist-3 level, there is a transverse polarization of

spin-1=2 hadrons in the leptonic plane as well as transverse
to the leptonic plane. The component of such transverse
polarization in the leptonic plane vanishes in eþe− → γ% →
qq̄ → hþ X but the component transverse to the leptonic
plane still remains.
In inclusive hadron production in eþe− annihilation at

high energies, twist-4 contributions are usually power
suppressed addenda to leading twist contributions and do
not lead to new observable effects.
The formalism should also be extended to the semi-

inclusive hadron production process where transverse
momentum dependent fragmentation functions can also
be studied. Such a study is under way.
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